FORCED-AIR

FORCED-AIR

\rightarrow **PRE-COOLING**

FORCED-AIR

→ PRE-COOLING (vs. "In-Transit")

\rightarrow FORCED-AIR

-> AUTOMATED

FORCED-AIR

→ AUTOMATED (vs. "Conventional")

FORCED-AIR

The field-packed produce is unloaded...

stacked in front of a fan...

forming a tunnel...

then tarped and cooled.

The Forced-Air Cooling Cycle REFRIGERANT WARM AIR TO **EVAPORATOR** COLD AIR TO BERRIES WARM AIR TO FAN

The Refrigeration Cycle

The heat leaves the facility here...

1 DAY = 2,000,000 LBS. BERRIES

70,000,000 BTU OF HEAT REMOVED 15,000 KW-HOURS USED (39% USEFUL)

Typical Cooling Tunnels

Temp Gradients, One-Way Air

EVAPORATOR

PRODUCT

Temp Gradients, Two-Way Air

EVAPORATOR

PRODUCT

Conventional Tunnel One-Way Cooling

Automated F.A. PreCooler History
1988 – Bob Ohling's portable reverse-air cooler, Santa Maria / Mexico

- 10 pallets, manual load and unload - Airflow reversing mechanical dampers

FIG.4

1988 – Bob Ohling's portable reverse-air cooler, Santa Maria / Mexico

- 10 pallets, manual load and unload - Airflow reversing mechanical dampers

1993 – Autocoolers installed at Driscoll's in Santa Maria, CA

- Conveyorized, 10 pallets each zone, batch loading
- Conveyed into the cold room

- Airflow reversing mechanical dampers

1988 – Bob Ohling's portable reverse-air cooler, Santa Maria / Mexico

- 10 pallets, manual load and unload - Airflow reversing mechanical dampers

1993 – Autocoolers installed at Driscoll's in Santa Maria, CA

- Conveyorized, 10 pallets each zone, batch loading
- Conveyed into the cold room Airflow reversing mechanical dampers

1997 – Autocoolers installed at Driscoll's in Watsonville, CA

- Conveyorized, 8 pallets each zone, semi-continuous loading
- Airflow reversing mechanical dampers

Driscoll's Watsonville Autocooler

1988 – Bob Ohling's portable reverse-air cooler, Santa Maria / Mexico

- 10 pallets, manual load and unload - Airflow reversing mechanical dampers

1993 – Autocoolers installed at Driscoll's in Santa Maria, CA

- Conveyorized, 10 pallets each zone, batch loading
- Conveyed into the cold room - Airflow reversing mechanical dampers

1997 – Autocoolers installed at Driscoll's in Watsonville, CA

- Conveyorized, 8 pallets each zone, semi-continuous loading
- Airflow reversing mechanical dampers

2000 - 2004 – MACS Cooler design conceived and developed

- Configured into shippable module Airflow change by zone (no dampers)
- Inflatable air seals (hang-ups, pallet sizes) 6 pallets each zone

1988 – Bob Ohling's portable reverse-air cooler, Santa Maria / Mexico

- 10 pallets, manual load and unload - Airflow reversing mechanical dampers

1993 – Autocoolers installed at Driscoll's in Santa Maria, CA

- Conveyorized, 10 pallets each zone, batch loading
- Conveyed into the cold room - Airflow reversing mechanical dampers

1997 – Autocoolers installed at Driscoll's in Watsonville, CA

- Conveyorized, 8 pallets each zone, semi-continuous loading
- Airflow reversing mechanical dampers

2000 - 2004 – MACS Cooler design conceived and developed

- Configured into shippable module Airflow change by zone (no dampers)
- Inflatable air seals (hang-ups, pallet sizes) 6 pallets each zone

2005 – 1st MACS Cooler operational at Watsonville Berry Cooler

- 4 modules long

- Improved cooling quality

- Good uptime record

- Reduced cooling costs

Watsonville Berry Cooler 4-Module, 2005

1988 – Bob Ohling's portable reverse-air cooler, Santa Maria / Mexico

- 10 pallets, manual load and unload - Airflow reversing mechanical dampers

1993 – Autocoolers installed at Driscoll's in Santa Maria, CA

- Conveyorized, 10 pallets each zone, batch loading
- Conveyed into the cold room - Airflow reversing mechanical dampers

1997 – Autocoolers installed at Driscoll's in Watsonville, CA

- Conveyorized, 8 pallets each zone, semi-continuous loading
- Airflow reversing mechanical dampers

2000 - 2004 – MACS Cooler design conceived and developed

- Configured into shippable module Airflow change by zone (no dampers)
- Inflatable air seals (hang-ups, pallet sizes) 6 pallets each zone

2005 – 1st MACS Cooler operational at Watsonville Berry Cooler

- 4 modules long - Improved cooling quality
- Good uptime record

- Reduced cooling costs

2005 - 2007 – Design modifications and enhancements

- Improved cleanability and serviceability
- Improved air filtration for seals
- Controls and instrumentation
- Pallet side shift option

- Galvanized frame
- Vacuum doors
- Seal changes

1988 – Bob Ohling's portable reverse-air cooler, Santa Maria / Mexico

- 10 pallets, manual load and unload - Airflow reversing mechanical dampers

1993 – Autocoolers installed at Driscoll's in Santa Maria, CA

- Conveyorized, 10 pallets each zone, batch loading
- Conveyed into the cold room - Airflow reversing mechanical dampers

1997 – Autocoolers installed at Driscoll's in Watsonville, CA

- Conveyorized, 8 pallets each zone, semi-continuous loading
- Airflow reversing mechanical dampers

2000 - 2004 – MACS Cooler design conceived and developed

- Configured into shippable module Airflow change by zone (no dampers)
- Inflatable air seals (hang-ups, pallet sizes) 6 pallets each zone

2005 – 1st MACS Cooler operational at Watsonville Berry Cooler

- 4 modules lona - Improved cooling quality
- Good uptime record

- 2005 2007 Design modifications and enhancements
 - Improved cleanability and serviceability
 - Improved air filtration for seals
 - Controls and instrumentation
 - Pallet side shift option

2008 – Redesigned MACS Coolers installed in Santa Maria, CA

- 2 – Two module units at Frontier Cooling - 1 – Single module unit at MJA Cooling

- Galvanized frame
- Vacuum doors
 - Seal changes

- Reduced cooling costs

Frontier Cooling 2-Module (x2), 2008

MJA Cooling 1-Module, 2008

500 Pallet/Day Cooler

10 Conventional Tunnels

500 Pallet/Day Cooler

4 Conventional Tunnels + One Automated Cooler 4500 S.F. Smaller Building

Tunnel Design Comparisons

		Fan D	ata		Pallets	Cooling	Fan Hp-Hr
Tunnel Design	Туре	Qty.	Нр еа.	Hp Tot.	Cooled	Time (min.)	per Pallet
	Prop.	2	7.5				
А	Prop.	1	10	25	8	120	6.25
	Prop.	2	15				
В	Prop.	1	20	50	10	70	5.83
с	Prop.	5	15	75	32	120	4.69
D	Cent.	1	30	30	10	110	5.50
E	40" AF	1	15	15	8	110	3.44
F	44" AF	1	20	20	10	100	3.33
Average Conventional Tunnel							

The following is based on 108 cartons/pallet, 8 lbs strawberries/carton, 65° start, 33° finish

MACS Cooler	40" AF	4	15	60	24	44	1.83

Electrical Usage Comparison

The following is based on 108 cartons/pallet, 8 lbs strawberries/carton, 65° start, 33° finish

	Typical	
	Conventional	MACS Cooler
	Tunnel	Zone
Fan Horsepower	25	15
Pallets per Turn	9	6
Cooling Time, minutes	105	44
Transition Time, minutes	30	3
Pallets Cooled per 10 hr day	40	77

Product Heat, Refrigeration Ton-Hrs/Pallet	2.8	2.8
Fan Run Time, hrs/day	8.9	9.8
Fan Heat, Refrigeration Ton-Hrs/Pallet	1.6	0.6
Bldg. Space for Cooling, s.f./tunnel	726	144
Space Cooling Load, Tons-hrs/Pallet	0.9	0.1
Refrigeration Tons-hrs/pallet, Total	5.3	3.4

Elec	ctrical Savings	48%	
Total kWh/Pallet	14.1		7.4
Refrigeration kWh/Pallet	8.5	5.5	
Fan kWh/Pallet	5.6	1.9	

Cooling Expense Comparison

The following is based on per pallet costs (cooling only) for a typical strawberry cooler running 8 lb/carton, 108 cartons/pallet, 300 pallets/day, 30,000 pallets/year

Cooling Expense Item		6 Conventional Tunnels		1 Two Module MACS Cooler		\$ Saved per Pallet		\$ Saved per Year	
1) Electrical Energy	\$	2.12	\$	1.11	\$	1.01	\$	30,150	
2) Cooler Forklift Driver Labor	\$	6.25	\$	2.50	\$	3.75	\$	112,500	
3) Cleaning and Maintenance	\$	0.15	\$	0.33	\$	(0.18)	\$	(5,484)	
Forklift Expense	\$	1.09	\$	0.65	\$	0.44	\$	13,088	
Totals	\$	9.61	\$	4.60	\$	5.01	\$	150,254	
						52%	Sa	vings	

Cooling Expense Comparison

The following is based on per pallet costs (cooling only) for a typical strawberry cooler running 8 lb/carton, 108 cartons/pallet, 300 pallets/day, 30,000 pallets/year

Cooling Expense Item		6 Conventional Tunnels		1 Two Module MACS Cooler		\$ Saved per Pallet		\$ Saved per Year	
1) Electrical Energy	\$	2.12	\$	1.11	\$	1.01	\$	30,150	
2) Cooler Forklift Driver Labor	\$	6.25	\$	2.50	\$	3.75	\$	112,500	
3) Cleaning and Maintenance	\$	0.15	\$	0.33	\$	(0.18)	\$	(5,484)	
Forklift Expense	\$	1.09	\$	0.65	\$	0.44	\$	13,088	
Totals	\$	9.61	\$	4.60	\$	5.01	\$	150,254	
						52%	Sa	vings	

Economic Considerations:

• This savings is about 5¢/carton, less than 1% of selling price.

Cooling Expense Comparison

The following is based on per pallet costs (cooling only) for a typical strawberry cooler running 8 lb/carton, 108 cartons/pallet, 300 pallets/day, 30,000 pallets/year

Cooling Expense Item		6 Conventional Tunnels		1 Two Module MACS Cooler		\$ Saved per Pallet		\$ Saved per Year	
1) Electrical Energy	\$	2.12	\$	1.11	\$	1.01	\$	30,150	
2) Cooler Forklift Driver Labor	\$	6.25	\$	2.50	\$	3.75	\$	112,500	
3) Cleaning and Maintenance	\$	0.15	\$	0.33	\$	(0.18)	\$	(5,484)	
Forklift Expense	\$	1.09	\$	0.65	\$	0.44	\$	13,088	
Totals	\$	9.61	\$	4.60	\$	5.01	\$	150,254	
						52%	Sa	vings	

Economic Considerations:

- This savings is about 5¢/carton, less than 1% of selling price.
- Cooling quality is also improved which maintains or increases product value.

Capital Cost Comparison

The following is based on expanding the cooling capacity of an existing facility by 300 pallets of strawberries per day

Capital Cost Item	60	Conventional Tunnels	1 Two Module MACS Cooler		
1) Pre-Cooling Equipment	\$	300,000	\$	690,000	
2) Evaporator Valve Groups	\$	30,000	\$	20,000	
3) Electrical Connections and Controls	\$	36,000	\$	6,000	
4) Refrigeration High-Side Addition	\$	250,000	\$	250,000	
5) Refrigerated Building Cost (new and/or retrofit)	\$	495,000	\$	30,800	
	\$	1,111,000	\$	996,800	
		10%	Sav	ings	

Additional Saving and Advantages

- Reduce cooling expenses (see "Cooling Expense Comparison" sheet)
- Steadier refrigeration load
- Accelerated asset depreciation
- Lower property taxes
- Lower permitting cost
- Faster project implementation
California Produce by PreCooling Type

		k -Tons
Commodity	Cooling Method	/year
Aparagus	Hydro	30
Apples	Room or Forced-air	77
Apricots	Room or Forced-air	9
Artichokes	Hydro	37
Avocados	Forced-air	135
Beans, snap	Hydro	30
Bell peppers	Room or Forced-air	462
Blueberries	Forced air	5
Boysenberries	Forced air	1
Broccoli	Liquid ice or Forced-air	920
Cabbage	Vacuum	303
Cantaloupe	Hydro or Forced-air	551
Carrots	Hydro	1052
Cauliflower	Forced-air	322
Celery	Hydro	850
Chili peppers	Room or Forced-air	82
Corn, sweet	Hydro	228
Cucumbers	Room or Forced-air	58
Dates	Room	19
Figs	Forced-air	7
Garlic	Room	215
Grapefruit	Room	201
Grapes, table	Forced-air	614

		k -Tons
Commodity	Cooling Method	/year
Head lettuce	Vacuum	2125
Honeydew	Forced-air	175
Kiwifruit	Forced-air	23
Leaf lettuce	Vacuum or Forced-air	740
Lemons	Room	798
Mushrooms	Forced-air	57
Nectarines	Forced-air	218
Olives	Forced-air	23
Onions	Room	1102
Oranges	Room	2268
Peaches	Room or Forced-air	601
Pears	Room or Forced-air	229
Plums	Room or Forced-air	158
Pumpkins	Room	57
Raspberries	Forced-air	58
Romaine lettuce	Vacuum or Forced-air	672
Spinach	Vacuum or Forced-air	231
Squash	Room or Forced-air	82
Strawberries	Forced-air	827
Sweet cherries	Hydro	32
Tangerines	Room	135
Tomatoes	Room or Forced-air	574
Watermelon	Forced-air	320
	TOTAL	17,713

California Produce by PreCooling Type

		k -Tons
Commodity	Cooling Method	/year
Aparagus	Hydro	30
Apples	Room or Forced-air	77
Apricots	Room or Forced-air	9
Artichokes	Hydro	37
Avocados	Forced-air	135
Beans, snap	Hydro	30
Bell peppers	Room or Forced-air	462
Blueberries	Forced air	5
Boysenberries	Forced air	1
Broccoli	Liquid ice or Forced-air	920
Cabbage	Vacuum	303
Cantaloupe	Hydro or Forced-air	551
Carrots	Hydro	1052
Cauliflower	Forced-air	322
Celery	Hydro	850
Chili peppers	Room or Forced-air	82
Corn, sweet	Hydro	228
Cucumbers	Room or Forced-air	58
Dates	Room	19
Figs	Forced-air	7
Garlic	Room	215
Grapefruit	Room	201
Grapes, table	Forced-air	614

		k-Tons
Commodity	Cooling Method	/year
Head lettuce	Vacuum	2125
Honeydew	Forced-air	175
Kiwifruit	Forced-air	23
Leaf lettuce	Vacuum or Forced-air	740
Lemons	Room	798
Mushrooms	Forced-air	57
Nectarines	Forced-air	218
Olives	Forced-air	23
Onions	Room	1102
Oranges	Room	2268
Peaches	Room or Forced-air	601
Pears	Room or Forced-air	229
Plums	Room or Forced-air	158
Pumpkins	Room	57
Raspberries	Forced-air	58
Romaine lettuce	Vacuum or Forced-air	672
Spinach	Vacuum or Forced-air	231
Squash	Room or Forced-air	82
Strawberries	Forced-air	827
Sweet cherries	Hydro	32
Tangerines	Room	135
Tomatoes	Room or Forced-air	574
Watermelon	Forced-air	320
	TOTAL	17,713

California Produce by PreCooling Type

		k-lons
Commodity	Cooling Method	/year
Aparagus	Hydro	30
Apples	Room or Forced-air	77
Apricots	Room or Forced-air	9
Artichokes	Hydro	37
Avocados	Forced-air	135
Beans, snap	Hydro	30
Bell peppers	Room or Forced-air	462
Blueberries	Forced air	5
Boysenberries	Forced air	1
Broccoli	Liquid ice or Forced-air	920
Cabbage	Vacuum	303
Cantaloupe	Hydro or Forced-air	551
Carrots	Hydro	1052
Cauliflower	Forced-air	322
Celery	Hydro	850
Chili peppers	Room or Forced-air	82
Corn, sweet	Hydro	228
Cucumbers	Room or Forced-air	58
Dates	Room	19
Figs	Forced-air	7
Garlic	Room	215
Grapefruit	Room	201
Grapes, table	Forced-air	614

		k -Tons
Commodity	Cooling Method	/year
Head lettuce	Vacuum	2125
Honeydew	Forced-air	175
Kiwifruit	Forced-air	23
Leaf lettuce	Vacuum or Forced-air	740
Lemons	Room	798
Mushrooms	Forced-air	57
Nectarines	Forced-air	218
Olives	Forced-air	23
Onions	Room	1102
Oranges	Room	2268
Peaches	Room or Forced-air	601
Pears	Room or Forced-air	229
Plums	Room or Forced-air	158
Pumpkins	Room	57
Raspberries	Forced-air	58
Romaine lettuce	Vacuum or Forced-air	672
Spinach	Vacuum or Forced-air	231
Squash	Room or Forced-air	82
Strawberries	Forced-air	827
Sweet cherries	Hydro	32
Tangerines	Room	135
Tomatoes	Room or Forced-air	574
Watermelon	Forced-air	320
	TOTAL	17,713

Up to 46% can be forced-air cooled.

Engineered for MACS Cool, Inc. by Hawkins Engineering, Moss Landing, CA Manufactured and Installed for MACS Cool, Inc. by C.I.M., Santa Maria, CA